
N89-16346
E . 3 . 5

t

INTERESTING VIEWPOINTS T O THOSE WHO W I L L PUT Ada INTO PRACTICE

Arne Carlsson
Saab Space A0

Goteborg, Sweden

INTRODUCTION

Ada will most probably be used as programming language for computers in the
NASA Space Station project. There will be a great number of computers and
computer types, e.9. in space for Data Management System, Crew Working Station,
experiments and on ground for flight control, launch control, maintenace,
validation, integration, software development. Will Ada be used for all these
computers or only for some of them? It is reasonable to suppose that Ada will
be used for at least embedded computers, because the high software costs for
these embedded computers were the reason why Ada activities were initiated
about ten years ago.

Saab has since 1979 followed the Ada activities, and during the last two years
w e have studied Ada for usage in our products, which are embedded computers for
on board use in space applications. The Ariane launcher, Hermes shuttle and
Columbus, which will be the European part o f the NASA Space Station, are
examples o f such applications.

On board computers, 0BC:s , have been developed by Saab since 1973, and these
0 B C : S are used in a number of applications, for example the Ariane launcher.
the EXOSAT, SPOT and HIPPARCOS satellites and in the E U R E C A platform. Up to
now. assembler language has been the main language for these embedded computers
even if there are high level language compilers as Pascal, Coral66 and Fortran
available.

Our on board computers are designed for use in space applications, where
maintenance b y man is impossible. All manipulation of such computers has to be
performed in an autonomous way or remote with commands from ground. In a manned
Space Station some maintenance work can be performed by service people on board,
but there are still a lot of applications, which require autonomous computers,
for example vital Space Station functions and unmanned orbital transfer
vehicles. In other words, the aspects in this paper are most valid also for
embedded computers in the NASA Space Station.

The rest of this paper will deal with those aspects, which have come out
of the analysis of Ada characteristics together with our experience of
requirements for embedded on board computers in space applications.

t

Ada is a registered trade mark o f the U.S. Government Ada
Joint Program Office.

MOTIVES FOR Ada USAGE

There are at least two large groups, which perhaps have not exactly the same
requirements on the programming language, these are the computer manufacturers
and the customers.

Saab is manufacturer of embedded computers for space applications on board. We
wish t o make some form of profit as a result of our computer production. If our
computers are very attractive also without Ada support, then it is tempting to
avoid Ada, because the costs to develop an Ada support to a computer are very
high. On the other hand, if it is possible to increase the price of a computer
because the Ada support makes it more attractive, then it is an interesting
alternative.

Ada i s designed t o give low maintenance costs and high quality of the program.
Therefore, because the customer pays the life cycle cost, Ada will be
attractive for customers with long lived projects, which contain vital
functions. However, development of Ada programs requires at least the same
or more resources compared with development in other languages, because Ada is
designed to be 'read' (maintenance) rather than be 'written' (development).
This means that for very short lived programs, another language can be a better
choice. Most space projects have a very long life cycle, which means that Ada
ought to be a good choice from space customer's point of view.

The most important impact on the Ada development, however, comes from large
customers. who require Ada as programming language. Then the computer
manufacturers have to give Ada support to their products if they want to
participate in the project. This happens for example when Department o f Defense
requires Ada for their projects. The Swedish Do0 also requires Ada after
January 1 9 8 6 for new military projects. The same thing happens in a number o f
countries. Because of these very strong 'pro-Ada' forces, the usage of Ada will
probably increase all over the world, and the computer manufacturers have to
give Ada support to their computers if they want to have a chance in the
competition on the market. The customer will choose a computer with Ada
support, because it is important to minimize the software costs, which take
such a great part of the costs of a computer system during the life cycle.

From programmers point of view, Ada is a nice language. It is a total language,
which means that no dialects are required (or allowed). Ordinary operating
system functions are, for example, included in the language. A normal reason
why assembler languages have been used for embedded computers i s the interface
between the embedded computer and the external world. Very often this interface
i s a special non standard type, which is not supported by any high order
language. Ada is designed especially for such embedded computers, which means
Ada in fact is the first chance to get embedded computer software, which
is possible to maintain in a pactical way. Because of the high degree of
standardization in Ada, the risk for misunderstanding between programmers is
minimized. This is important when a number of countries participate in a space
project, and will contribute t o an increased program quality and lower cost.

Ada PROGRAM LIMITS

View the following figure:

I Ada TOTAL I
I I
I 1 Ada 1 I I
I 1 I I
I 1 1 I I I
I 1 1 COMPUTER 1 I I I
1 1 1 I I I I
I 1 1 I I I I
I 1 0 I I I
I 1 0 I 0 I
I 0 0 I
I 0 0 I
I 0 0 I
I 1 0 Ada N I 0 I
1 1 I I I
I 1 1 I I I I
I 1 1 COMPUTER N I I I I
I 1 1 I I I I
I 1 1 I I I I
I 1 I I I
I 1 I I I
I I I
I I I

I
I

INPUT/OUTPUT

The Ada language tells nothing about the number o f computers, which take part in
execution o f an Ada program. Suppose that computer modules 1 to N cooperate to
execute one program, A d a TOTAL, then the programmer has to think only on the
black box function and on the INPUT/OUTPUT signals. All communication and time
synchronization between computer modules and task allocation to the modules
1 to N W i l l be performed by a program, that can be generated by one Ada
compiler. This compiler has to know a lot about each computer module and also
about the communication lines between the modules. Another way to solve the
problem is t o write a number of programs, Ada 1 to Ada N , and use one or more
compilers, which generate code for one computer module at the time. Here the
programmer must write the program, that has to administrate the time
synchronization and communication between the computer modules and also for
the task allocation.

From the computer customer's point of view it seems attractive t o choose the
Ada TOTAL alternative and let the Ada compiler d o a lot o f the work. In the
Space Station, for example, it would be nice if one "clever' Ada compiler
handled the communication between computer modules. However, in practice there
are a lot o f problems with this Ada TOTAL alternative. Development costs for
such a compiler will be very high and time very long; if the computer
structure is very complex, then the risk is high that no compiler at all is

E . 3 . 5 . 3

available when needed. Even if such a compiler is possible to develop, the
price will be so high, that it is difficult to sell the compiler. Its
Special architecture makes it impossible to use in other applications, and then
the development costs can not be spread out on a number of products. In the
Space Station project, the computer modules will most probably come from
various computer manufacturers, and this complicates the Ada TOTAL compiler
still more. Questions about responsibility, maintenance and modifications of
the computers as well as the Ada compilers during the life cycle will be
complicated when many companies are involved in and controlled by the same
compiler. Also the support equipment for development, integration,verification
and maintenance will be complicated and so will the administration of the
support equipment.

The Ada TOTAL line seems to be not usable in practice because o f the following
reasons: too high complexity in technical functions and in administration
between companies. This indicates that the other way with several programs,
Ada 1 t o Ada N , will be a better one. Then the interface between compiler
and computer can be handled within one company. The interface between companies
will consist of the communication lines. Experience shows that connection of
computers from two or more manufacturers can take very long time and be
extremely expensive if the communication interface is badly defined, because
people think that they d o understand each other, but they d o not. Therefore it is
very important to define all communication protocols in detail as soon as
possible in a project.

In the Ada 1 t o Ada N alternative, it is not possible, within the Ada
concept, t o distribute a data base to several computer modules. The solution
will be t o provide each computer module with a program, that will handle
communication lines and distributed data between computer modules. B y defining
a suitable program interface t o this communication interface, the application
programmer will get a feeling of distributed data base.

Ada PROGRAMMING SUPPORT ENVIRONMENT , APSE

From software point of view,a computer system consists of: embedded target
computer hardware and software, environment for development and maintenance
of software, programming language for the embedded computer.

I I
I I PROGRAHHING LANGUAGE I I
I I I I
I I
I I

I I I I
I EMBEDDED COMPUTER I I ENVIRONMENT FOR I
I I I PROGRAMMING SUPPORT I

I I

The programming language in fact belongs to the environment, but because of its
great importance, it is oftpn handled as a separate component.

E . 3 . 5 . 1

It 1 s important to choose and adapt these three computer system components to
each other in a proper way to make it possible to reach specified requirements,
for example quality and l o w life cycle cost.

Not only the embedded computer but also the programming support environment
and language must work properly during the entire life cycle, which for space
applications can be very long, perhaps 10 to 2 0 years. Consequently Ada, which
is designed for long life cycle projects and easy to maintain, shall be used
not only for the embedded computer but also for programming of the environment
computers.

The Stoneman specification for Ada Programming Support Environment, APSE,
says that the programming language for the APSE itself shall be Ada; only the
most hardware near programs may be written in another language, normally on
a lower level. Then, if the APSE hardware must be exchanged to another one,
only these lower level programs have to be rewritten. However, these programs
close to the hardware can be very hard to develop, which means that the
Software costs for exchange of APSE hardware can be very high, even if most
programs are written in Ada. Rewriting of the APSE kernel programs
will also affect the APSE quality in a negative way, because each time a new
piece of program is included, the number of software design errors increases,
and it takes time t o reach the same quality level as before the rewriting.
The following figure shows this.

PROGRAM QUALITY
I
1

I

1
I .

I I I TIME
REWRITING R E W R I T I NG

It i s possible to avoid these effects by using environment computers wlth
either totally compatible or standardized instruction sets and I/O signals.
Then no software at all need to be rewritten because of new computers in the
environment, and the QUALITY/TIME diagram will have the following look:

PROGRAM QUALITY
I
I
I
I
I
I .
1 .
I TIME

E . 3 . 5 . 5

It could be a risk that such standardization and compatible ideas destroy the
possibilities for computer hardware evolution, but I d o not think there i s
any risk in practice. An example of this is the MIL-STD-1750A. There are very
powerful and usable such processors, even if their instruction architecture
is old. Remember that the most expensive part of a computer system, the
software, will be improved by this philosophy.

If the embedded computers could use the same instruction set as the computers
in the environment, then w e would get a number of advantages. The price of
the Ada compiler for the embedded computer can be lower if the compilers to
the environment and to the embedded computer can be derived from each other.
This is important because Ada compiler development i s very expensive. It will
also be easier t o find programmers for development and maintenace during life
cycle if the instruction set is used also in many other computers. The same
programs can be utilized in the environment as well as in the embedded
computer, which is positive from quality point of view.

Software activities around on board space applications are different compared
t o ground applications. On ground it is possible, and also normal, t o
deliver software with guaranty and modify if it does not work properly during
integration and validation. On board in space the software has to work the
first time it is used in practice, especially vital programs for spacecraft
control. Of course the flight software is carefully tested on ground before
launch, but the real environment is met after launch, for the first time.
The flight software has t o pass several phases: first it will be developed
on ground and this phase i s perhaps the most 'normal' one, but it i s still
different from program development for embedded systems on ground. For example,
regard the debugging session, where an accepted method is to use in circuit
emulation for embedded systems on ground. The principle is that control lines
and busses are drawn out and the processor removed from the embedded computer
to the programming support environment, from where it will be possible to
control the embedded system in detail. When an on board computer for space
use shall be validated or integrated in a subsystem on ground, it is very
difficult to use the in circuit emulation method, because the control lines,
busses and processor can not be drawn out because of quality, reliability
and practical reasons. This means that the best software development tool
existing today for embedded computer systems, the in circuit emulation, can
perhaps not be utilized for embedded on board space computers when it is most
needed. The on board computers, developed by Saab, are equipped with special
hardware and microprogram software to allow powerful debugging also in these
embedded situations. The next phase for the flight software is execution in
space. For manned missions the maintenance can be performed on board, but the
program debugging will be still more complicated than on ground. Connection
of programming support environment for in circuit emulation is as difficult
as on ground, but even if it would be possible, it can be difficult t o bring
the ground programming Support environment into space. Probably specially
designed programming Support environment has to be developed for use on board
in manned missions. For unmanned missions the maintenance has to be performed
remote, which means that a number of other computers and communication lines
constitute the interface between the embedded on board computer and the
programming support environment. To make remote maintenance possible, the on

E . 3 . 5 . 6

b o a r d computer has t o be equ ipped w i t h e x t r a p rograms and perhaps a l s o e x t r a
hardware t o p e r f o r m debugg ing commands f r o m g round . The programming Suppor t
equ ipment a s w e l l a s t h e embedded computer a l s o must have t h e r i g h t i n t e r f a c e
t o t h e i n t e r m e d i a t e computers and commun ica t i on l i n e s .

What does s t a n d a r d i z a t i o n mean f o r Ada Programming Suppor t E n v i r o n m e n t , A P S E ?
Regard a s an example t h e debugg ing on ground and t h e remote ma in tenance on
b o a r d a s d e s c r i b e d above (a l s o v i s u a l i z e d i n t h e f o l l o w i n g f i g u r e) .

GROUND ON B O A R D

I I I I
I EMBEDDED COMPUTER I I E M B E D D E D COMPUTER I
I I I I

I I
I I

I I I * I
I A P S E 1 I I I N T E R M E D I A T E I
I I I C O M P U T E R S AND I

I C O M M U N I C A T I O N I
1 T

I I
I A P S E 2 I

*
These computers m a y a l s o c o n t a i n a number o f Ada p rog rams ,
each s u p p o r t e d by i t s own A P S E .

W i l l i t be p o s s i b l e t o u t i l i z e A P S E 1 f rom one m a n u f a c t u r e r d u r i n g t h e
deve lopment phase and A P S E 2 f r o m a n o t h e r m a n u f a c t u r e r f o r ma in tenance
d u r i n g m i s s i o n ? I t ought t o be p o s s i b l e i f t h e f l i g h t s o f t w a r e s h a l l be
s u p p o r t e d d u r i n g l i f e c y c l e , w h i c h i s t h e mean ing when Ada i s used f o r
embedded sys tems. However, my e x p e r i e n c e o f A P S E i s t h a t a s l o n g a s you a r e
w o r k i n g i n s i d e t h e h o s t computer , where t h e A P S E s o f t M a r e i s execu ted , t h e n
A P S E g i v e s a l l n e c e s s a r y h e l p . I t a d m i n i s t r a t e s e d i t i n g , c o m p i l i n g , p r i n t i n g
and management o f p rog ram v e r s i o n s f o r example. Bu t when t h e t a r g e t computer
i n t h e embedded sys tem s h a l l be reached f o r p rog ram l o a d i n g , debugg ing and
e x e c u t i o n c o n t r o l , t h e n A P S E does n o t s u p p o r t t h a t . Then you have t o use
a n o t h e r equ ipmen t , w h i c h i s n o t i n v o l v e d i n A P S E . T h i s i s u n s a t i s f a c t o r y ,
e s p e c i a l l y because t h e program debugg ing perhaps i s t h e most d i f f i c u l t phase
i n t h e s o f t w a r e l i f e c y c l e . A l s o t h e p h i l o s o p h y o f p rogram l o a d i n g i n t o
embedded systems i s i n t e r e s t i n g . Suppose t h a t t h e embedded computer has no
n a t u r a l way f o r p rog ram l o a d i n g , t h e n w i l l t h i s p r o b l e m be s o l v e d as an
a p p l i c a t i o n f u n c t i o n , o r i s i t such an o r d i n a r y p r o b l e m f o r embedded c o m p u t e r s ,
t h a t i t s h a l l be s p e c i f i e d f o r A P S E ?

E . 3 . 5 . 7

B r i e f l y t h e requirements on A P S E f o r embedded computers on board i n space
a p p l i c a t i o n s a r e :
-use Ada a l s o f o r t h e A P S E computers
-use an i n s t r u c t i o n s e t i n APSE computers, which w i l l no t be changed d u r i n g

-use t h e same i n s t r u c t i o n Set i n A P S E computers a s i n the embedded computer

- A P S E s h a l l a l l o w power fu l debugging o f t h e embedded computer on ground

l i f e c y c l e

t o g i v e maximum support t o t h e embedded on board computer system

s p e c i a l l y d u r i n g i n t e g r a t i o n and v a l i d a t i o n phases, when i n t e r n a l s i g n a l s
a re d i f f i c u l t t o reach

- A P S E s h a l l be p o s s i b l e t o b r i n g i n t o space f o r manned miss ions , e.g. Space
S t a t i o n

- A P S E s h a l l a l l o w power fu l debugging o f t h e embedded computer on board i n
space t o be performed i n a remote way from ground

- A P S E s h a l l be standardized i n t h a t way t h a t i t i s poss ib le t o m a i n t a i n t h e
same Ada program on board f rom va r ious A P S E : s

- A P S E s h a l l comprise a l l t o o l s , which are necessary f o r programming suppor t
o f t h e embedded on board computer. A t remote debugging, however, t h e
i n t e r m e d i a t e computers w i l l no t be seen a s p a r t o f A P S E , bu t r a t h e r a s p a r t
o f t h e communication l i n e

-An APSE conta ins a l o t o f f u n c t i o n s , which a r e in tended t o g i v e , f o r example,
h i g h q u a l i t y programs and l o w l i f e c y c l e cos t . Some o f these f u n c t i o n s
r e q u i r e t h a t t h e programmer f o l l o w s g i ven r u l e s i n o rder t o reach t h e g o a l .
Here i s a r i s k f o r c o n f l i c t s between these r u l e s and the working r o u t i n e s o f
a company. No big company w i l l modify t h e o r g a n i s a t i o n a n d work ing r o u t i n e s
t o f i t an A P S E . Therefore a very impor tan t requirement f o r an A P S E i s
f l e x i b i l i t y t o make adapt ion t o va r ious company o rgan isa t i ons and work ing
r o u t i n e s p o s s i b l e .

The APSE a l s o ought t o c o n t a i n a Program Design Language, PDL, t o support t h e
e a r l y so f tware phases be fo re coding a s w e l l a s t he maintenance phase, when i t
can be a good h e l p f o r understanding o f program f u n c t i o n . Ada has been t e s t e d
a s PDL a t Saab, and been found t o be a good candidate f o r t h a t j o b . I t i s
p r a c t i c a l t o use the s p e c i f i c a t i o n p a r t o f an Ada program d u r i n g program
des ign , because i n t h a t way a p a r t o f t h e program code e x i s t s when t h e coding
phase beg ins .

Ada C O M P I L E R

A t Saab we are l o o k i n g f o r Ada compi le rs , which generates usable code t o
p rocessors , which we can use i n our embedded computers on board i n space
a p p l i c a t i o n s . U n t i l now, many o f our on board computers have been equipped
w i t h s p e c i a l i n s t r u c t i o n s e t s , which have been adapted t o each s p e c i f i c
a p p l i c a t i o n i n o rde r t o make i t as power fu l a s poss ib le . This has been p o s s i b l e
because t h e requirement of Programming support has been main ly an assembler
and a debugger, which are p o s s i b l e t o redes ign f o r each p r o j e c t . Now, when Ada
w i l l be r e q u i r e d . we have t w o ways t o go. We can develop Ada compi le rs t o our
Saab computers w i t h s p e c i a l i n s t r u c t i o n se ts . We can a l s o use microprocessors,
which a l ready are equipped w i t h Ada compi le rs , i n our on board computers.
Because o f t h e h i g h cos ts , which are r e q u i r e d f o r own development o f Ada
compi lers t o a r e l a t i v e l y sma l l number of s p e c i a l purpose computers, i t i s
tempt ing t o t r y t o use more s tandard ized microprocessors w i t h a l ready e x i s t i n g
Ada compi le rs . However, t h e r e a re a number o f impor tan t aspects t o t h i n k about
when buy ing an Ada compi le r , which w i l l be used f o r on board computers i n
space a p p l i c a t i o n s .

E . 3 . 5 . 8

Often you read in reports and other papers that it is important to use
'commercial microprocessors' and "commercial software' in order to keep costs
on a l o w level. Our experience says that this is not always true for long
life cycle projects, for example in space projects. The manufacturers of
commercial microprocessors and software have to compete with each other about
the commercial market, where the big money are. They offer new products within
short time intervals in order to try to be one step before the other. The
manufacturer's interest of maintenance for the old product will decrease, of
course, because he has to spend all resources on the latest product. If you
use such a product in a project with long life cycle, you will have to choose
between: A) keep the old product, which probably is space qualified, and hope
that it will be supported during the life cycle of your project: or E) take
the new product and hope that it becomes space qualified. No one of these
alternatives is good. Each of them can end up in very high costs to find a
usable alternative. A better alternative would be to define and standardize
a processor for space applications on board. It could be done analogous with
the MIL-STD-l750A, defined by DoD. I f such a standard is used in space projects
with long life cycle, then you have always a good chance to find a new
qualified component if you lose one. You can also replace such a processor
with a new one with no software modifications at all. The old Ada compiler
can for example be used. It is a hard job and it takes long time to define
and state such a standard,and until that is done I think a good idea would be
t o use the MIL-STD-1750A for embedded computers in space instead of using
commercial processors and software.

When Ada is used as programming language, it would be an advantage if a future
processor standard for space were adapted for Ada. The MIL-STD-17SOA specifies
a register machine, while a stack machine architecture would be a more suitable
processor standard in space applications where Ada is used. The reason is that
the instructions of a stack machine are on the same level a s A d a statements,
while the instructions in a register machine are on a lower level. This gives
in turn as result that the stack machine requires smaller program memory
compared with the register machine. Comparisons in practice show that a stack
machine needs only about half of the memory required by a register
machine. The stack machine probably has higher performance too, for example
because of fewer accesses to memory and possibility to parallel processing o f
the high level instructions inside the processor. Performance tests often
consist of execution of an instruction mix. The instructions are normally
taken from the instruction set of a register machine, which is a drawback for
the stack machine. In this way the register machine can give best test result,
while the application function is best performed by the stack machine. It 1 s
therefore of great importance that the performance tests are specified in
functional terms in order to find the most suitable computer.

Small memory and high processing power are perhaps not important requirements
in embedded systems on ground, but it is in space applications on board. The
reasons are: very high costs to put power, mass and volyme from ground into
space, and computer reliabilty decreases with memory size, which means that it
is very valuable if you can do the job with one processor instead of two and
also if the memory is small. The ground expression 'waste with memory, it is
cheap!" is not true for on board computers in space; normally a qualified
memory for space costs one hundred times more than a ground memory.

A l s o t h e Ada compiler has great influence o n the memory size and processing

power. However, most o f t h e Ada compilers available today are not w e l l adapted
f o r embedded computers i n space applications. In fact most Ada compilers a r e
not developed for embedded computers at all. but for l a r g e administrative
computers. T h e n some of t h e m have been adapted t o various embedded Computers.
It i s a risk that small memory and high performance have got low priority
d u r i n g development of such a compiler. Probably f e w users of ground systems
a r e interested in compact code and high performance o f t h e generated c o d e .
Execution speed of t h e Ada compiler itself i s often m o r e interesting. Because
o f t h i s I t hink that development of special Ada compilers, i n order t o m e e t
t h e requirements for embedded computers in space, is motivated. T h e development
c o s t s would be payed back very soon because of lower costs for embedded
c o m p u t e r s o n board. I t seems natural for m e t o generate effective c o d e for t h e
embedded system on board w i t h an Ada compiler o n ground instead of increasing
embedded computer resources o n board because of ineffective code produced by an
Ada compiler o n ground. A standardized instruction set for embedded c o m p u t e r s
o n board i n space should also contribute t o the generation of m o r e powerful
c o d e i n that way that t h e Ada compiler manufacturers could concentrate their
e f f o r t s o n optimization o f c o d e t o only o n e instruction set; t o d a y , w h e n they
h a v e o n e Ada compiler working. it is time t o start development of an Ada
c o m p i l e r f o r t h e next instruction set. There is n o time for improvement w o r k .
Most Ada compilers a r e developed by software companies, w h i l e t h e processor
m a n u f a c t u r e r , w h o has t h e best knowledge about t h e processor and instruction
s e t , w o u l d b e most suitable t o d e v e l o p an Ada compiler, which generates o p t i m a l
code. A standard instruction set would give also t h e software companies this
possibility.

Normally t h e Ada compiler d o e s not generate all t h e code t o an embedded
computer program at each compilation. A large part of the program is involved
i n t h e Runtime Support L i b r a r y , RSL. which has been created earlier. The R S L
c o n t a i n s computer specific programs and perhaps also real time programs, e . g .
ordinary operating system functions, which w i l l be called by t h e c o d e
generated by t h e Ada compiler. RSL c a n be a relatively large program p a c k a g e ,
perhaps 100 - 200 kbytes. It i s therefore important that RSL is developed in a
m o d u l a r w a y , which allows generation of small Ada programs. If Ada shall be
used a l s o f o r small embedded computers, which w a s t h e intention w h e n t h e Ada
w o r k started m o r e t h a n t e n years ago, then it must b e possible t o sort out RSL
pieces o f about 1 0 k b y t e s , or perhaps smaller. That selection)ob shall be
performed by t h e Ada compiler automaticly. The RSL is highly dependent
o n t h e hardware architecture of the embedded computer. w h i c h m e a n s that you
normally h a v e t o modify t h e RSL a s soon as signal lines or components are
changed i n t h e hardware. T h i s i s a great problem from validation point of view.

Validation o f an Ada compiler is a costly process, therefore it is an a d v a n t a g e
f o r a compiler manufacturer i f his Ada compiler crn be used i n a s many
applications a s possible. For administrative computer system, e.g. a VAX w i t h
l i n e printers. d i s k s and terminals. a validated Ada compiler can be used i n
m a n y installations w i t h o u t t o be modified. This is possible because of t h e
standardized inputloutput units. For embedded computers it c a n b e very
difficult t o find even t w o computers w i t h equal i l o interfaces. This gives
different RSL:s or different Ada compilers, which i n turn m e a n s separate
validations for each system. Ada Joint Program Office, AJPO, proposes easier
r u l e s , they w i l l accept modification of validated Ada compilers and call such
a compiler f o r a derived Ada compiler. I think this gives a not desired result.

E . 3 . 5 . 1 0

.
?

One big reason to start up Ada development was wishes to decrease the high
software costs for embedded computers, and these high software costs depends
to a very high degree on all these complex i f 0 interfaces. Therefore, usage
of a great number of modified Ada compilers in order to fit all these i / o
interfaces, will not decrease the software costs for embedded computers. A
better idea ought to be usage of a smaller number various i f 0 interfaces,
which have been standardized, in order to make it possible to use one validated
A d a compiler to many embedded computer installations. Improvements of a
product can be done inside these i f 0 interfaces. It is not always necessary
to modify also the interface, even if it seems as a good idea from technical
point of view.

During the validation of an Ada compiler no measurements are made about size
of generated code or performance of that code. This is a lack if the code
shall be used in an embedded computer, because applications in such computers
are often time critical, for example to take a sample of an analogous signal
each 10 millisecond with an accuracy o f 1 millisecond. The situation can be
that the required function can be performed by the code from one validated Ada
compiler, but when you have to exchange your Ada compiler, for some reason, to
another validated Ada compiler, then the function can perhaps not be performed
by the new code. Analogously the memory can hold the code from one validated
Ada compiler but perhaps not from another. I think that the validation tests
should be supplemented with code size and performance tests, at least for
Ada compilers to embedded computers on board in space applications.

Generally, time i s an important parameter for embedded computers on board in
space. A normal requirement is that a number of computers on board have to be
synchronized to an absolute time. If the code to these computers are generated
by different Ada compilers, then time synchronization has to be performed via
the communication lines, if it shall be performed by software. The requirements
on the time accuracy are often so hard that it is impossible to perform
synchronization by using the long way via the application communication
protocol. Instead lower level protocols have to be used. I f this protocol
software is included in the R S L or generated by the Ada compiler. then the
Ada compiler must be seen a s affected by the time synchronization requirements,
but hopefully the different A d a compilers do not have to exchange information
to each other.

A question, which arises very often is whether it is possible or not to combine
Ada programs to programs written in other languages. The link process can be
organized to handle that, but I think it is better to translate source code
from other languages into A d a source code in order to get all advantages
from the Ada compiler.

Ada IN MULTIPROCESSOR COHPUTERS

Writing an Ada program to a multiprocessor computer shall from the programmers
point of view be equal to writing the program t o a single processor computer.
Static allocation of tasks between various processors is a job for the Ada
compiler and is transparent for the Programmer. If dynamic allocation shall be
possible, the necessary programs to d o this must be generated by the Ada
compiler or be included in the RSL. During program loading and debugging also
the APSE has to handle all processors in such a w a y , that they are transparent
for the programmer. The RSL, Ada compiler and the rest of APSE will all become
more complex compared with a one processor computer and are because of that
more expensive t o develop.

Fault tolerant computers can be seen a s a kind of multiprocessor computers,
which have possibility to detect faults and move tasks from a faulty unit t o
a fresh one. As for other multiprocessor computers, it shall be possible for a
programmer t o write an Ada program without thinking on the fault tolerant
computer architecture. It is a job for the Ada compiler to generate necessary
programs, or they may be included in RSL. For example, if the requirements
are Fail OperationalfFail Operational for a computer, then the RSL or the
code generated by the Ada compiler must be able t o take care of two faults
and still keep the Ada application program executing. As mentioned above, it
is very costly to develop support software, e . g . Ada compiler. RSL, loader and
debugger, t o this type of computers, and therefore it desirable to use as many
as possible of equal computers in order to utilize the costly support software.
The work t o detect faults and switch to fresh units can be performed either by
hardware or by software. The reliability will often be better, if software is
used, because of less hardware, and because of that the software method is
attractive for space applications.

An interesting question arises when you are talking about n-version programming
in order t o be tolerant against design failures. If all n versions of a program
are written in Ada, then n different APSE:s ought t o be used for code generation
and debugging, because such a complicated software package as APSE probably
contains design failures too. Then the question will be: is it realistic to
work with n different APSE:s from economical point of view?

E . 3 . 5 . 1 2

